\(\int \frac {x^3}{\sqrt [3]{1-x^2} (3+x^2)} \, dx\) [1009]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 94 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=-\frac {3}{4} \left (1-x^2\right )^{2/3}-\frac {3 \sqrt {3} \arctan \left (\frac {1+\sqrt [3]{2-2 x^2}}{\sqrt {3}}\right )}{2\ 2^{2/3}}+\frac {3 \log \left (3+x^2\right )}{4\ 2^{2/3}}-\frac {9 \log \left (2^{2/3}-\sqrt [3]{1-x^2}\right )}{4\ 2^{2/3}} \]

[Out]

-3/4*(-x^2+1)^(2/3)+3/8*ln(x^2+3)*2^(1/3)-9/8*ln(2^(2/3)-(-x^2+1)^(1/3))*2^(1/3)-3/4*arctan(1/3*(1+(-2*x^2+2)^
(1/3))*3^(1/2))*3^(1/2)*2^(1/3)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {457, 81, 57, 631, 210, 31} \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=-\frac {3 \sqrt {3} \arctan \left (\frac {\sqrt [3]{2-2 x^2}+1}{\sqrt {3}}\right )}{2\ 2^{2/3}}-\frac {3}{4} \left (1-x^2\right )^{2/3}+\frac {3 \log \left (x^2+3\right )}{4\ 2^{2/3}}-\frac {9 \log \left (2^{2/3}-\sqrt [3]{1-x^2}\right )}{4\ 2^{2/3}} \]

[In]

Int[x^3/((1 - x^2)^(1/3)*(3 + x^2)),x]

[Out]

(-3*(1 - x^2)^(2/3))/4 - (3*Sqrt[3]*ArcTan[(1 + (2 - 2*x^2)^(1/3))/Sqrt[3]])/(2*2^(2/3)) + (3*Log[3 + x^2])/(4
*2^(2/3)) - (9*Log[2^(2/3) - (1 - x^2)^(1/3)])/(4*2^(2/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 57

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, Simp[-L
og[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Dist[3/(2*b), Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/
3)], x] - Dist[3/(2*b*q), Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && PosQ
[(b*c - a*d)/b]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {x}{\sqrt [3]{1-x} (3+x)} \, dx,x,x^2\right ) \\ & = -\frac {3}{4} \left (1-x^2\right )^{2/3}-\frac {3}{2} \text {Subst}\left (\int \frac {1}{\sqrt [3]{1-x} (3+x)} \, dx,x,x^2\right ) \\ & = -\frac {3}{4} \left (1-x^2\right )^{2/3}+\frac {3 \log \left (3+x^2\right )}{4\ 2^{2/3}}-\frac {9}{4} \text {Subst}\left (\int \frac {1}{2 \sqrt [3]{2}+2^{2/3} x+x^2} \, dx,x,\sqrt [3]{1-x^2}\right )+\frac {9 \text {Subst}\left (\int \frac {1}{2^{2/3}-x} \, dx,x,\sqrt [3]{1-x^2}\right )}{4\ 2^{2/3}} \\ & = -\frac {3}{4} \left (1-x^2\right )^{2/3}+\frac {3 \log \left (3+x^2\right )}{4\ 2^{2/3}}-\frac {9 \log \left (2^{2/3}-\sqrt [3]{1-x^2}\right )}{4\ 2^{2/3}}+\frac {9 \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+\sqrt [3]{2-2 x^2}\right )}{2\ 2^{2/3}} \\ & = -\frac {3}{4} \left (1-x^2\right )^{2/3}-\frac {3 \sqrt {3} \tan ^{-1}\left (\frac {1+\sqrt [3]{2-2 x^2}}{\sqrt {3}}\right )}{2\ 2^{2/3}}+\frac {3 \log \left (3+x^2\right )}{4\ 2^{2/3}}-\frac {9 \log \left (2^{2/3}-\sqrt [3]{1-x^2}\right )}{4\ 2^{2/3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.12 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=-\frac {3}{8} \left (2 \left (1-x^2\right )^{2/3}+2 \sqrt [3]{2} \sqrt {3} \arctan \left (\frac {1+\sqrt [3]{2-2 x^2}}{\sqrt {3}}\right )+2 \sqrt [3]{2} \log \left (-2+\sqrt [3]{2-2 x^2}\right )-\sqrt [3]{2} \log \left (4+2 \sqrt [3]{2-2 x^2}+\left (2-2 x^2\right )^{2/3}\right )\right ) \]

[In]

Integrate[x^3/((1 - x^2)^(1/3)*(3 + x^2)),x]

[Out]

(-3*(2*(1 - x^2)^(2/3) + 2*2^(1/3)*Sqrt[3]*ArcTan[(1 + (2 - 2*x^2)^(1/3))/Sqrt[3]] + 2*2^(1/3)*Log[-2 + (2 - 2
*x^2)^(1/3)] - 2^(1/3)*Log[4 + 2*(2 - 2*x^2)^(1/3) + (2 - 2*x^2)^(2/3)]))/8

Maple [A] (verified)

Time = 8.38 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.03

method result size
pseudoelliptic \(-\frac {3 \left (-x^{2}+1\right )^{\frac {2}{3}}}{4}-\frac {3 \,2^{\frac {1}{3}} \ln \left (\left (-x^{2}+1\right )^{\frac {1}{3}}-2^{\frac {2}{3}}\right )}{4}+\frac {3 \,2^{\frac {1}{3}} \ln \left (\left (-x^{2}+1\right )^{\frac {2}{3}}+2^{\frac {2}{3}} \left (-x^{2}+1\right )^{\frac {1}{3}}+2 \,2^{\frac {1}{3}}\right )}{8}-\frac {3 \sqrt {3}\, 2^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3}\, \left (1+2^{\frac {1}{3}} \left (-x^{2}+1\right )^{\frac {1}{3}}\right )}{3}\right )}{4}\) \(97\)
trager \(\text {Expression too large to display}\) \(642\)
risch \(\text {Expression too large to display}\) \(648\)

[In]

int(x^3/(-x^2+1)^(1/3)/(x^2+3),x,method=_RETURNVERBOSE)

[Out]

-3/4*(-x^2+1)^(2/3)-3/4*2^(1/3)*ln((-x^2+1)^(1/3)-2^(2/3))+3/8*2^(1/3)*ln((-x^2+1)^(2/3)+2^(2/3)*(-x^2+1)^(1/3
)+2*2^(1/3))-3/4*3^(1/2)*2^(1/3)*arctan(1/3*3^(1/2)*(1+2^(1/3)*(-x^2+1)^(1/3)))

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.30 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=-\frac {3}{4} \cdot 4^{\frac {1}{6}} \sqrt {3} \left (-1\right )^{\frac {1}{3}} \arctan \left (\frac {1}{6} \cdot 4^{\frac {1}{6}} \sqrt {3} {\left (2 \, \left (-1\right )^{\frac {1}{3}} {\left (-x^{2} + 1\right )}^{\frac {1}{3}} - 4^{\frac {1}{3}}\right )}\right ) - \frac {3}{16} \cdot 4^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} \log \left (4^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} {\left (-x^{2} + 1\right )}^{\frac {1}{3}} - 4^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} + {\left (-x^{2} + 1\right )}^{\frac {2}{3}}\right ) + \frac {3}{8} \cdot 4^{\frac {2}{3}} \left (-1\right )^{\frac {1}{3}} \log \left (-4^{\frac {1}{3}} \left (-1\right )^{\frac {2}{3}} + {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right ) - \frac {3}{4} \, {\left (-x^{2} + 1\right )}^{\frac {2}{3}} \]

[In]

integrate(x^3/(-x^2+1)^(1/3)/(x^2+3),x, algorithm="fricas")

[Out]

-3/4*4^(1/6)*sqrt(3)*(-1)^(1/3)*arctan(1/6*4^(1/6)*sqrt(3)*(2*(-1)^(1/3)*(-x^2 + 1)^(1/3) - 4^(1/3))) - 3/16*4
^(2/3)*(-1)^(1/3)*log(4^(1/3)*(-1)^(2/3)*(-x^2 + 1)^(1/3) - 4^(2/3)*(-1)^(1/3) + (-x^2 + 1)^(2/3)) + 3/8*4^(2/
3)*(-1)^(1/3)*log(-4^(1/3)*(-1)^(2/3) + (-x^2 + 1)^(1/3)) - 3/4*(-x^2 + 1)^(2/3)

Sympy [F]

\[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int \frac {x^{3}}{\sqrt [3]{- \left (x - 1\right ) \left (x + 1\right )} \left (x^{2} + 3\right )}\, dx \]

[In]

integrate(x**3/(-x**2+1)**(1/3)/(x**2+3),x)

[Out]

Integral(x**3/((-(x - 1)*(x + 1))**(1/3)*(x**2 + 3)), x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.03 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=-\frac {3}{8} \cdot 4^{\frac {2}{3}} \sqrt {3} \arctan \left (\frac {1}{12} \cdot 4^{\frac {2}{3}} \sqrt {3} {\left (4^{\frac {1}{3}} + 2 \, {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right )}\right ) + \frac {3}{16} \cdot 4^{\frac {2}{3}} \log \left (4^{\frac {2}{3}} + 4^{\frac {1}{3}} {\left (-x^{2} + 1\right )}^{\frac {1}{3}} + {\left (-x^{2} + 1\right )}^{\frac {2}{3}}\right ) - \frac {3}{8} \cdot 4^{\frac {2}{3}} \log \left (-4^{\frac {1}{3}} + {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right ) - \frac {3}{4} \, {\left (-x^{2} + 1\right )}^{\frac {2}{3}} \]

[In]

integrate(x^3/(-x^2+1)^(1/3)/(x^2+3),x, algorithm="maxima")

[Out]

-3/8*4^(2/3)*sqrt(3)*arctan(1/12*4^(2/3)*sqrt(3)*(4^(1/3) + 2*(-x^2 + 1)^(1/3))) + 3/16*4^(2/3)*log(4^(2/3) +
4^(1/3)*(-x^2 + 1)^(1/3) + (-x^2 + 1)^(2/3)) - 3/8*4^(2/3)*log(-4^(1/3) + (-x^2 + 1)^(1/3)) - 3/4*(-x^2 + 1)^(
2/3)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.03 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=-\frac {3}{8} \cdot 4^{\frac {2}{3}} \sqrt {3} \arctan \left (\frac {1}{12} \cdot 4^{\frac {2}{3}} \sqrt {3} {\left (4^{\frac {1}{3}} + 2 \, {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right )}\right ) + \frac {3}{16} \cdot 4^{\frac {2}{3}} \log \left (4^{\frac {2}{3}} + 4^{\frac {1}{3}} {\left (-x^{2} + 1\right )}^{\frac {1}{3}} + {\left (-x^{2} + 1\right )}^{\frac {2}{3}}\right ) - \frac {3}{8} \cdot 4^{\frac {2}{3}} \log \left (4^{\frac {1}{3}} - {\left (-x^{2} + 1\right )}^{\frac {1}{3}}\right ) - \frac {3}{4} \, {\left (-x^{2} + 1\right )}^{\frac {2}{3}} \]

[In]

integrate(x^3/(-x^2+1)^(1/3)/(x^2+3),x, algorithm="giac")

[Out]

-3/8*4^(2/3)*sqrt(3)*arctan(1/12*4^(2/3)*sqrt(3)*(4^(1/3) + 2*(-x^2 + 1)^(1/3))) + 3/16*4^(2/3)*log(4^(2/3) +
4^(1/3)*(-x^2 + 1)^(1/3) + (-x^2 + 1)^(2/3)) - 3/8*4^(2/3)*log(4^(1/3) - (-x^2 + 1)^(1/3)) - 3/4*(-x^2 + 1)^(2
/3)

Mupad [B] (verification not implemented)

Time = 5.14 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.24 \[ \int \frac {x^3}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=-\frac {3\,2^{1/3}\,\ln \left (\frac {81\,{\left (1-x^2\right )}^{1/3}}{4}-\frac {81\,2^{2/3}}{4}\right )}{4}-\frac {3\,{\left (1-x^2\right )}^{2/3}}{4}-\frac {3\,2^{1/3}\,\ln \left (\frac {81\,{\left (1-x^2\right )}^{1/3}}{4}-\frac {81\,2^{2/3}\,{\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{16}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{8}+\frac {3\,2^{1/3}\,\ln \left (\frac {81\,{\left (1-x^2\right )}^{1/3}}{4}-\frac {81\,2^{2/3}\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{16}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{8} \]

[In]

int(x^3/((1 - x^2)^(1/3)*(x^2 + 3)),x)

[Out]

(3*2^(1/3)*log((81*(1 - x^2)^(1/3))/4 - (81*2^(2/3)*(3^(1/2)*1i + 1)^2)/16)*(3^(1/2)*1i + 1))/8 - (3*(1 - x^2)
^(2/3))/4 - (3*2^(1/3)*log((81*(1 - x^2)^(1/3))/4 - (81*2^(2/3)*(3^(1/2)*1i - 1)^2)/16)*(3^(1/2)*1i - 1))/8 -
(3*2^(1/3)*log((81*(1 - x^2)^(1/3))/4 - (81*2^(2/3))/4))/4